Numerical simulation of ZrO2(Y2O3) ceramic plate penetration by cylindrical plunger

نویسندگان

  • V. Bratov
  • N. Kazarinov
  • Y. Petrov
چکیده

In this paper dynamic fracture process due to high-speed impact of steel plunger into ceramic sample is simulated. The developed numerical model is based on finite element method and a concept of incubation time criterion, which is proven to be applicable in order to predict brittle fracture under high-rate deformation. Simulations were performed for ZrO2(Y2O3) ceramic plates. To characterize fracture process quantitatively fracture surface area parameter is introduced and controlled. This parameter gives area of new surface created during dynamic fracture of a sample and is essentially connected to energetic peculiarities of fracture process. Multiple simulations with various parameters made it possible to explore dependencies of fracture area on plunger velocity and material properties. Energy required to create unit of fracture area at fracture initiation (dynamic analogue of Griffith’s surface energy) was evaluated and was found to be an order of magnitude higher as comparing to its static value.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical analysis of low velocity impact on ceramic-metal-composite targets

In the present paper, the problem of low velocity impact of plates made from different configurations of ceramic, aluminum, steel and composite (S-glass polyester) is analyzed numerically using  Abaqus finite element software. The projectile is assumed to be a rigid body with a hemispherical head. Also, for ceramic layers, Holmquist constitutive model, for aluminum and steel layers, Johnson Coo...

متن کامل

Characterization of Sol-Gel-Derived and Crystallized HfO2, ZrO2, ZrO2-Y2O3 Thin Films on Si(001) Wafers with High Dielectric Constant

The sol-gel method produces amorphous or crystalline thin gel films of metallic solid compounds by solidifying a sol formed by hydrolyzing and polymerizing a solution containing metallic compounds. Sol-gel processes are widely employed in the field of chemistry to prepare ceramic powders and thin films of hafnium oxide (HfO2) (Nishide et al., 2000) and zirconium oxide (ZrO2) ( Liu et al., 2002)...

متن کامل

Computational Modeling of Impact Response with the RG Damage Model and the Meshless Local Petrov-Galerkin (MLPG) Approaches

The Rajendran-Grove (RG) ceramic damage model is a three-dimensional internal variable based constitutive model for ceramic materials, with the considerations of micro-crack extension and void collapse. In the present paper, the RG ceramic model is implemented into the newly developed computational framework based on the Meshless Local Petrov-Galerkin (MLPG) method, for solving high-speed impac...

متن کامل

EFFECTS OFVARIOUS NUCLEATION AGENTS ON CRYSTALLIZATION KINETIC OFLAS GLASS CERAMIC

The effect of Y2O3, CeO2, P2O5, ZrO2 and TiO2 in single, double and triple form on crystallization mechanism of Li2OAl2O3- SiO2(LAS) glass-ceramic system was investigated .The nucleation and crystallization peak temperatures of optimized samples in each group were determined by Ray & Day method .The crystalline phase was determined by the X-ray diffractometery .The micro-structure of the sample...

متن کامل

Ultrasonic Velocity Measurements in Alumina-zirconia Ceramic Composite System

Among novel structural materials, composites are attractive because they combine the properties of two o more individual components. As an important example, in alumina-zirconia ceramic composite system, the incorporation of α-Al2O3 into stabilized zirconia increases significantly the mechanical and thermal properties. In this work an alumina-zirconia ceramic composite have been prepared with d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015